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Abstract—We study the gathering problem to make multiple
agents initially scattered in arbitrary networks gather at a single
node. There exist £ agents with unique identifiers (IDs) in the
network, and f of them are weakly Byzantine agents, which
behave arbitrarily except falsifying their identifiers. The agents
behave in synchronous rounds, and each node does not have
any memory like a whiteboard. In the literature, two algorithms
for solving the gathering problem have been proposed. The
first algorithm assumes that the number n of nodes is given
to agents and achieves the gathering in O(n* - |Ago0a| - X(n))
rounds, where |Ago0q| is the length of the largest ID among non-
Byzantine agents, and X (n) is the number of rounds required to
explore any network composed of n nodes. The second algorithm
assumes that the upper bound N of n is given to agents and
at least 4f2 + 8f + 4 non-Byzantine agents exist, and achieves
the gathering in O((f + |Agood|) - X(NN)) rounds. Both the
algorithms allow agents to start gathering at different times.
The first algorithm can terminate agents simultaneously, while
the second one not. In this paper, we seek an algorithm that
solves the gathering problem efficiently with the intermediate
number of non-Byzantine agents since there is a large gap
between the numbers of non-Byzantine agents in the previous
works. The resultant gathering algorithm works with at least
8f + 8 non-Byzantine agents when agents start the algorithm at
the same time, agents may terminate at different times, and N
is given to agents. To reduce the number of agents, we propose
a new technique to simulate a Byzantine consensus algorithm
for synchronous message-passing systems on agent systems. The
proposed algorithm achieves the gathering in O(f-|Ago04|- X (NV))
rounds. This algorithm is faster than the first existing algorithm
and requires fewer non-Byzantine agents than the second existing
algorithm if n is given to agents, although the guarantees on
simultaneous termination and startup delay are not the same.

Index Terms—Distributed algorithms, Byzantine environments,
Gathering

I. INTRODUCTION
A. Background

Mobile agents (in short, agents) are software programs that
can move autonomously in a distributed system. A problem to
make multiple agents initially scattered in the system meet at
a single node is called gathering. This problem is fundamental
to various cooperative behavior of agents [1] and allows the
agents to share information and plan for future tasks efficiently.

Since agents are software programs, they are exposed to
bugs, cracking, and other threats. Thus, as the number of

agents increases, it is inevitable that some of those agents
become faulty. Among various faults of agents, Byzantine
faults are known to be the most severe because we have
no control over the behavior of the faulty agents (called
Byzantine agents). For example, Byzantine agents can stay
at the current node, move to a neighbor node, and convey
arbitrary information to other agents, ignoring their algorithms.
In this paper, we consider the gathering problem in the
presence of Byzantine agents and propose a deterministic
synchronous gathering algorithm to solve this problem.

B. Related Works

The gathering problem has widely been studied in the
literature. When the number of agents is two, the gathering
problem is called the rendezvous problem. Those studies as-
sume the gathering problem in various environments, which is
a combination of the assumptions (e.g., agent synchronization,
anonymity, presence/absence of memory on a node (called
whiteboard), presence/absence of randomization, topology).
Then, those studies have clarified the solvability and, if
solvable, they have analyzed its cost (e.g., time, the number
of moves, memory space, etc.). Pelc [1] has extensively
surveyed deterministic rendezvous problems under the various
assumptions. Also, Alpern and Gal [4] have described an
extensive survey of randomized rendezvous problems under
the various assumptions.

Recently many studies have considered the gathering prob-
lem in the presence of Byzantine agents [2], [3], [S]-[9]. These
studies consider two types of Byzantine agents, weakly and
strongly ones. While weakly Byzantine agents can behave
arbitrarily except falsifying their own IDs, strongly ones can
behave arbitrarily including falsifying their own IDs. Table I
summarizes this study and the related studies in the presence of
weakly Byzantine agents. Note that the assumption of startup
delay in Table I means agents may start an algorithm at
different times but agents can wake up sleeping agents at the
visited node.

Dieudonné et al. [2] introduced the gathering problem in
synchronous environments in the presence of weakly Byzan-
tine agents. They provided two gathering algorithms under
the assumption that k£ agents exist in an arbitrary network



TABLE I
A SUMMARY OF SYNCHRONOUS GATHERING ALGORITHMS IN THE PRESENCE OF WEAKLY BYZANTINE AGENTS ASSUMING THAT AGENTS HAVE UNIQUE
IDs. HERE, INPUT IS THE INFORMATION THAT IS INITIALLY GIVEN TO ALL AGENT, n IS THE NUMBER OF NODES, N IS THE UPPER BOUND OF 7, X(’n) IS
THE NUMBER OF ROUNDS REQUIRED TO EXPLORE ANY NETWORK COMPOSED OF 1 NODES, |Agood| IS THE LENGTH OF THE LARGEST ID AMONG
NON-BYZANTINE AGENTS, ‘Aall‘ IS THE LENGTH OF THE LARGEST ID AMONG AGENTS, k IS THE NUMBER OF AGENTS, f IS THE NUMBER OF
BYZANTINE AGENTS, AND F' IS THE UPPER BOUND OF f.

Input  Condition of #Byzantine agents  Startup delay  Simultaneous termination Time complexity
[2] n f+1<k Yes Yes O(n? - [Agood| - X(n))
[2] F 2F4+2<k Yes Yes Poly. of n & |Agoodl
(3] N AfP+9f+4<k Yes No O((f + |Agooal) - X (N))
[3] N 4f2 4+ 9f+4<k Yes Yes O((f + |Aau]) - X (V)
This N 9f+8<k No No O(f - 1A good| - X(IN))

composed of n nodes and at most F' of them are Byzantine
agents. The first algorithm solves the gathering problem in
O(n* - |Agooa| - X(n)) rounds if & > f + 1 holds (i.e.,
at least one non-Byzantine agent exists) and n is given to
agents, where f is the number of Byzantine agents, \Agood|
is the length of the largest ID among non-Byzantine agents,
and X (n) is the number of rounds required to explore any
network composed of n nodes. The second algorithm achieves
the gathering in polynomial time of |Agyeq| and X(n) if
k > 2F + 2 holds (i.e., at least F' + 2 non-Byzantine
agents exist) and F' is given to agents. The numbers of
non-Byzantine agents in these algorithms match the lower
bounds under the assumptions. Hirose et al. [3] provided
the two gathering algorithms with lower time complexity by
assuming €2(f?) non-Byzantine agents. If the upper bound
N of n is given to agents and k > 4f2 + 9f + 4 holds
(i.e., at least 42 + 8f + 4 non-Byzantine agents exist), the
first algorithm achieves the gathering with non-simultaneous
termination in O((f +|Agood|) - X (IV)) rounds, and the second
one achieves the gathering with simultaneous termination in
O((f+|Aau])- X (N)) rounds, where |A,y| is the length of the
largest ID among agents. Tsuchida et al. [8] reduced the time
complexity using authenticated whiteboards (i.e., each agent
has a dedicated area for each node and can leave the infor-
mation on its area using its ID). Their algorithm achieves the
gathering in O(F'm) rounds if F' is given to agents and F' < k
holds, where m is the number of edges. To efficiently achieve
the gathering, the authors proposed a technique for agents
to simulate a consensus algorithm for Byzantine message-
passing systems. However, this technique requires each node
to have an authenticated whiteboard. Tsuchida et al. [9] also
proposed a gathering algorithm in asynchronous environments
with authenticated whiteboards.

Dieudonné et al. [2] also introduced the gathering problem
in synchronous environments in the presence of strongly
Byzantine agents for the first time and have provided two
gathering algorithms under different assumptions. The first
algorithm solves the gathering problem in exponential time
of [Agood| and X (n) if k > 3F +1 holds (i.e., at least 2F' + 1
non-Byzantine agents exist) and n and F' are given to agents.
The second algorithm achieves the gathering in exponential
time of |[Agooq| and X (n) if & > 5F + 2 holds (i.e., at
least 4F" + 2 non-Byzantine agents exist) and F' is given to

agents. On the other hand, the lower bounds on the number of
non-Byzantine agents required to solve the gathering problems
under these assumptions are F' + 1 and F' + 2, respectively.
Bouchard et al. [5] have provided two algorithms using the
number of non-Byzantine agents that match the lower bounds
on the gathering problems under these assumptions. Bouchard
et al. [6] reduced the time complexity to polynomial time
complexity by assuming that €(f?) non-Byzantine agents
exist. Their algorithm assume that [loglogn] is given to
agents and k > 5f2 4+ 7f 42 holds (i.e., at least 52 +6f 42
non-Byzantine agents exist), and achieves the gathering in
polynomial time of n and [Ago0q|, Where |Ago0q] is the length
of the smallest ID among non-Byzantine agents, and f is the
number of Byzantine agents. Miller et al. [7] have proposed
the gathering algorithm in small time complexity by additional
assumption. They assume that £ > 2f + 1 holds (i.e., f + 1
non-Byzantine agents exist) and an agent can get the subgraph
induced by nodes within distance D,. from its current node and
the state of agents in the subgraph, where D, is the radius of
the graph. Their algorithm achieves the gathering in O(kn?)
rounds.

C. Contribution

We provide an efficient algorithm that achieves the gathering
with non-simultaneous termination in synchronous environ-
ments where (k) weakly Byzantine agents exist. Due to
space limitations, we omit the details of the proposed al-
gorithm and give them in the technical report [10]. In the
literature, the algorithm by Dieudonné et al. [2] tolerates
any number of Byzantine agents with high time complexity,
while the algorithm by Hirose et al. [3] works with low
time complexity restricting the number of Byzantine agents
as 4f2 + 9f + 4 < k. There is a large gap between the
assumptions of the number of agents in the above two works,
and thus it is natural to consider a gathering algorithm under
the intermediate assumption. The proposed algorithm achieves
the gathering with non-simultaneous termination when N is
given to agents, at least 9f 4+ 8 agents exist in the network,
and agents start the algorithm at the same time. This algorithm
is faster than that of Dieudonné et al. [2] and requires fewer
non-Byzantine agents than that of Hirose et al. [3] if n is
given to agents, although the guarantees on simultaneous
termination and startup delay are not the same. To solve the
gathering, we propose a new technique to simulate a Byzantine



consensus algorithm proposed by Khanchandani et al. [11] for
a synchronous message-passing system on an agent system,
where one agent imitates one process. This technique can
be used not only for Byzantine gatherings but also for other
problems.

II. PRELIMINARIES
A. Agent Model

Agent system is modeled by a connected undirected graph
G = (V,E), where V is a set of n nodes and E is a set of
edges. We define d(v) as the degree of node v. Each incident
edge of node v is assigned a locally-unique port number in
{1,...,d(v)}. That is, on node v, the port number of edge
(v,u) is different from that of edge (v,w) for node w # u.
Nodes do not have IDs or memories.

We denote by MA = {aj,as,...,a;} the set of k agents.
Each agent a; € MA has an unique ID denoted by a;.id € N
and has an infinite amount of memory. Agents know the upper
bound N of the number of nodes, but they know neither n, k,
nor the IDs of other agents. Agents cannot mark visited nodes
or traversed edges in any way. An agent is modeled as a state
machine (S,J), where S is a set of agent states and ¢ is a
state transition function. A state is represented by a tuple of
the values of all the variables that an agent has. Each agent has
a special state that indicates the termination of an algorithm,
called a terminal state. If an agent transitions into a terminal
state, it never moves or updates its state after that.

All agents start an algorithm at the same time, and the initial
nodes of the agents are chosen by an adversary. All agents
repeatedly and synchronously execute a round. In each round,
every agent a; executes the following operations:

o Look: Agent a; learns the state of a;, the degree d(u)
of the current node u, and the port number ¢ of the edge
through which the agent arrived at node w (or a; notices
that v is an initial node). Also, if multiple agents exist
at node u, a; learns the states of all agents at node wu,
including agents in a terminal state. We define A; C MA
as the set of agents existing at node u and a;.

o Compute: Agent a; computes function ¢ using the infor-
mation obtained in the previous Look operation as input.
The output is the next agent state, whether it stays or
leaves, and the outgoing port number if it leaves.

o Move: If a; decides to stay, it stays at the current node
until the beginning of the next round. If a; decides to
leave, it leaves through the decided outgoing port number
and arrives at the destination node before the beginning
of the next round. If two agents traverse the same edge
in different directions at the same time, the agents cannot
notice this fact.

There are f weakly Byzantine agents, which act arbitrarily
apart from an algorithm, except changing their IDs. If multiple
agents meet Byzantine agents at the same node, all of them
learn the same statuses of the Byzantine agents in the Look
operation. We call all agents except weakly Byzantine agents
good agents and denote by g = k — f the number of good

agents. Good agents know neither the actual number f of
Byzantine agents nor the upper bound of f.

B. Gathering Problem

The gathering problem requires all good agents to transition
into the terminal state at the same node. Note that this
definition does not require agents to enter a terminal state at
the same time. We measure the time complexity of a gathering
algorithm by the number of rounds required for the last good
agent to transition into the terminal state.

C. Rendezvous Procedure

The rendezvous procedure allows two different agents to
meet at the same node in any connected graph composed
of at most N nodes if each of them gives a different ID
and N as inputs to the procedure. The procedure is a well-
known combination of an ID transformation procedure and an
exploration procedure, the former is proposed by Dessmark
et al. [12], and the latter is based on universal exploration
sequences (UXS) and is a corollary of the result of Ta-Shma
et al. [13]. We call this procedure REL(id), where id is an
ID given as input, and the execution time tzz;(id) of REL(id)
is O(N®log(N)log(id)) rounds. This procedure guarantees
that, if two agents with distinct IDs [y and [y start REL(l;)
and REL([3) in round r1 and ro, respectively, they meet at the
same node before rounds max(ry,re) + trpr(min(ly,l2)).

D. Parallel Byzantine Consensus Algorithm for Synchronous
Message-Passing Systems

The proposed algorithm uses the parallel Byzantine consen-
sus algorithm [11] for synchronous message-passing systems,
which is called PCONS(S) where S is a set given as input,
by simulating the algorithm on agent systems. This algorithm
assumes mostly the well-known synchronous message-passing
model; thus, we mention only rare assumptions of the algo-
rithm here. In the model, each agent does not know the number
m of nodes, the number b of weakly Byzantine nodes, or the
IDs of other nodes. However, every message has the ID of its
sender; thus, when a node receives a message, it can know the
sender’s ID. Node v can send a message msg in two ways:
(1) v broadcasts msg to all nodes, or (2) v sends msg to a
specific node that v knows its ID. There is no restriction on
the actions of Byzantine nodes except for falsifying their IDs
to a directly communicating node.

Each good node v has a set S, composed of &, input pairs
(idi,z%) (1 <i < k,), where id’ is an ID of the input pair
and ! is an input number. We say an algorithm solves the
parallel Byzantine consensus problem if, when each good node
v starts with set S, as an input, each node outputs a set of
pairs subject to the following conditions called PBC property:

e Validity 1 If (id, x) is an input pair of every good node

and x # L, the output set of a good node includes (id, z).
« Validity 2 If (id, x) is not an input pair of any good node,
the output set of any good node does not include (id, z).

o Agreement If the output set of a good node includes
(id, ), then the output sets of all other good nodes must
include (id,x) as well.
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Fig. 1. The reliable group creation strategy of the proposed algorithm. Each
figure corresponds to Steps (a) to (c) in Section III-A. Agents with IDs 1, 2,
3, and 5 belong to the same group candidate.

o Termination Every good node outputs a set of pairs
exactly once in a finite number of phases.

Lemma 1 ( [11]). Assume that more than 3b nodes exist in a
system. If every good node v simultaneously starts PCONS(S,,)
with a set S, as input, its execution satisfies the PBC property.
Every good node outputs a set in O(b) phases, and its output
time differs by at most one phase among good nodes.

III. BYZANTINE GATHERING ALGORITHM

Throughout the paper, we assume k = g+ f > 9f + 8,
which implies that there are at least 8 f + 8 good agents in the
network. Recall that agents know N, but do not know n, k,

or f.
A. Overview

We give the overview of the proposed Byzantine gathering
algorithm, which aims to gather all good agents at a single
node. For simplicity, we assume that agents know f here, and
will remove this assumption later. Due to page limitation, we
explain the details in the full paper [10]. The underlying idea
of the algorithm is made of the following three steps:

(1) All agents collect all agent IDs using the rendezvous
algorithm REL.

(2) All agents decide a common ID as a target ID.

(3) An agent aqr4e¢ With the target ID stays at the current
node and the other agents search for a;qr4e; using REL.

If there are no Byzantine agents, all agents can decide a
common target ID by choosing the smallest ID of the collected
IDs and gather at the node where the agent with the smallest ID
exists. However, if there is a Byzantine agent, that idea fails.
Assume that a Byzantine agent Byz € MA has the smallest
ID. If Byz meets only a part of good agents in Step (1),
the other good agents do not choose Byz.id as a target ID.
Therefore, good agents are divided into two or more groups.
Even if all good agents know Byz.id, Byz can avoid meeting
the other agents in Step (3), and all good agents keep searching
endlessly for asqrget.

To solve these problems, the proposed algorithm suppresses
the influence of Byzantine agents by letting several agents
create a reliable group such that good agents can trust the
behavior of the group. After collecting all good agents’ IDs,
agents execute the following three steps as shown in Fig. 1:

(a) Agents create a group candidate of at least 3f + 1 agents.

(b) Agents in the group candidate make a common ID set by
using the parallel Byzantine consensus algorithm.

(c) By using the common ID set, agents in the group can-
didate gather to create a reliable group composed of at
least f 4+ 1 good agents.

The goal of Steps (a) and (b) is to make at least 3f + 1
agents make a common ID set. To do this, we use the
parallel Byzantine consensus algorithm in Section II-D. Since
the consensus algorithm assumes message-passing systems,
agents simulate the system by using rendezvous algorithm
REL. Simply put, agents exchange messages when they meet
other agents using REL. In Step (a), agents create a group
candidate of at least 3 f +1 agents such that they can exchange
messages with each other among the group candidate. In Step
(b), as an input of the consensus algorithm, each agent uses
the set of agent IDs (known to the agent) in the same group
candidate. If the group candidate is composed of at least 3 f+1
agents, the output is common and includes IDs of all good
agents in the group candidate. In Step (c), agents in a group
candidate decide a target ID based on the common ID set and
gather at the node where an agent with the target ID exists.
If at least 2f + 1 agents gather, they create a reliable group
composed of at least f + 1 good agents. Otherwise, the agents
determine the next target ID and find the agent with the new
target ID. The algorithm ensures that all good agents in the
group candidate eventually gather and create a reliable group.

Once at least one reliable group is created, the proposed
algorithm can achieve the gathering as follows. Good agents
in the group decide the smallest agent ID in the group as a
group ID and execute REL using the group ID. On the other
hand, good agents not in the reliable group execute REL using
their own IDs. When a good agent meets a reliable group with
a smaller group ID, it accompanies the group. All agents in
the reliable group are at the same node, act identically, and
have the same group ID. If a good agent meets the reliable
group, the agent trusts the group since the group consists of
at least f 4+ 1 agents with the same group ID, which implies
that the group contains at least one good agent. As a result, all
good agents accompany the reliable group with the smallest
ID and achieve the gathering.

The key to the algorithm is the reliable group creation
procedure. The existing algorithm of Hirose et al. [3] employs
another strategy to create a reliable group after collecting IDs.
In the algorithm, each good agent searches for one of the
agents with the smallest f+1 IDs of the collected IDs. Because
good agents may be divided into (f) nodes, this strategy
requires at least Q(f?) good agents to guarantee that a reliable
group is created at some of those nodes. On the other hand,
our proposed algorithm uses the strategy such that Q(f) good
agents make a common ID set and search for a target agent
one by one synchronously. This strategy requires (f) good
agents, which reduces the number of good agents required to
achieve the gathering.



B. Strategy to Create a Reliable Group

In this section, we explain a strategy to create a reliable
group, called MakeReliableGroup. We give the overview
of the strategy while assuming that agents know f, and then
discuss the way to remove this assumption at the end of this
section.

1) Overview: As mentioned in Section III-A, in
MakeReliableGroup, agents in the group candidate
make a common ID set and search for agents with target
IDs. Algorithm MakeReliableGroup uses the parallel
Byzantine consensus algorithm PCONS for at least 2f + 1
good agents to have a common ID set. However, since PCONS
assumes a synchronous message-passing model, we cannot
use PCONS directly. Therefore, MakeReliableGroup
simulates the model on an agent system as follows.

First, MakeReliableGroup selects a group candidate
composed of at least 3f + 1 agents and finds time T that is
sufficiently long to meet all the agents in the group candidate
by REL. Then, agents regard the time interval of 7" rounds as a
phase in the message-passing model, and simulate the behavior
of the phase during the 7" rounds. More concretely, each agent
a; in the group candidate executes REL(a;.id) for T rounds
and, if a; meets another agent a; in the group candidate, a;
shares a message that a; sent in the previous phase. Then, in
the last round of the interval, a; executes the computation of
the phase using the messages collected by the current phase.
Since a; can meet all good agents in the group candidate
during the 7' rounds, this behavior can simulate the broadcast
of messages in the synchronous message-passing model.

This simulation requires agents to (1) construct a group
candidate composed of at least 3 f + 1 agents, (2) start PCONS
simultaneously with the agents in the same group candidate,
and (3) know time T that is long enough to meet the agents in
the same group candidate. To meet the requirements, agents
synchronously repeat a cycle. Each agent sets the length of
the first cycle as Tj;,; rounds, where T;,; is a given positive
integer, and doubles the length every cycle, i.e., that of
the second cycle is 2 - Tj,; rounds, that of the third cycle
is 4 - T;,; rounds, and so on. If the length of a cycle is
long enough for agent a; to meet all other good agents by
REL(a;.id), a; starts REL(a;.id) for the cycle. If the length
of a cycle is long enough for at least 3f + 1 agents to
meet each other, MakeReliableGroup regards them as a
group candidate and makes them start PCONS simultaneously.
By this behavior, MakeReliableGroup can achieve both
(1) and (2). Furthermore, since the length of the cycle is
long enough for at least 3f 4+ 1 agents to meet each other,
MakeReliableGroup can achieve (3) by defining T as the
length of the cycle when the agents start PCONS.

Algorithm MakeReliableGroup consists of four stages:
CollectID, MakeCandidate, AgreelD, and MakeGroup stages.
In the CollectID stage, agents collect IDs of all good agents. In
the MakeCandidate stage, agents select the group candidate.
In the AgreelD stage, agents in the group candidate obtain
a common ID set by using consensus algorithm PCONS. In
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Fig. 2. The stage flow of Algorithm MakeReliableGroup. Notions C,
M, and A represent cycles of the CollectID stage, MakeCandidate stage, and
the AgreelD stage, respectively.

the MakeGroup stage, agents create a reliable group. The
overall flow of MakeReliableGroup is shown in Fig.
2. Each stage consists of multiple cycles and an agent a;
executes those stages in order. Agents have the same length
of the first cycle and double the length every cycle until they
start the AgreelD stage. Then, if an agent is in the AgreelD
stage or the MakeGroup stage, the agent does not update the
length of a cycle. Thus, agents in the CollectID stage or the
MakeCandidate stage start their cycles at the same time.

In MakeReliableGroup, an agent a; can check whether
another agent belongs to the same group candidate as follows.
Assume that a; starts the AgreelD stage in round r. Let a; be
an agent that also starts the AgreelID stage in round r. Before
round 7, a; and a; have the same length of their cycles. Also,
an agent does not update the length of a cycle in the AgreelD
stage or the MakeGroup stage. Thus, a; and a; always have
the same length of their cycles. Hence, when a; meets a;
at the current node after a; starts the AgreelD stage, a; can
understand that a; is a member of the same group candidate.
On the other hand, let us consider that another good agent a,
starts the AgreelD stage in round r’ (r' # r). The total number
of cycles that a, has executed in the CollectID stage and the
MakeCandidate stage is greater or less than that of a;. The
length of a cycle that a, starts the AgreelD stage is different
from the length of a cycle that a; does. Hence, when a; meets
ag at the current node after a; starts the AgreelD stage, a;
can understand that a, started the AgreelD stage at a different
round, that is, a, is a member of the group candidate different
from a;.

We guarantee that in the case where good agent a; starts the
Agreeld stage faster than good agent a, (shown in Fig. 2b),
when a, starts a cycle, a; also starts a cycle at the same time.



Since a; does not update the length of a cycle anymore, the
length of each cycle in the AgreelD stage and the MakeGroup
stage is identical. On the other hand, a, doubles the length
of a cycle every cycle until it starts the AgreelD stage. This
implies that the length of a cycle of a; is a multiple of the
length of a cycle of a;. Hence, when ay starts a cycle, a; also
starts a cycle.

2) CollectID stage: In the CollectID stage, agents collect
IDs of all good agents. To do this, if the length of a cycle
is not long enough for a; to meet all other good agents, a;
stays at the current node. Otherwise, a; executes REL(a;.id)
throughout the current cycle. When a; meets another agent
a; while executing REL(a;.1d), a; records ID of a;. Once a;
completes REL(a;.id), a; moves to the MakeCandidate stage
in the next cycle. When a; finishes the CollectID stage, the
agent has at least the IDs of all good agents.

3) MakeCandidate stage: In the MakeCandidate stage,
agents select the group candidate. More concretely, agents
make at least 3f + 1 good agents start the AgreelD stage
at the same time and regard these agents as a group candi-
date. To do this, each agent a; maintains variable a;.ready.
Initially, a;.ready = False. During the MakeCandidate stage,
a; continues to execute REL(a;.id). At the beginning of a
cycle, a; checks whether at least 8f + 1 agents have already
started the MakeCandidate stage, and if it is true, a; stores
True in a;.ready. Note that, for an agent a;, the starting time
of the MakeCandidate stage of a; only depends on a;.id,
because in the CollectID stage a; executes REL(a;.id) if the
length of the cycle is sufficiently long, and then moves to the
MakeCandidate stage. Consequently, a; can make this decision
by the set of collected IDs. During the CollectID stage and
the MakeCandidate stage, when a; meets another agent a;,
a; also records the value of a;.ready. If a; has witnessed at
least 4f + 1 agents with ready = True at the beginning of a
cycle, a; also stores True in variable ready. After that, if a;
has witnessed at least 6 f + 1 agents with ready = True at the
beginning of a cycle, a; starts the AgreelD stage from next
cycle (after a; finishes the current cycle).

In the following, we explain why this behavior makes at
least 3f + 1 agents start the AgreelD stage at the same time.
Since f Byzantine agents exist, if no good agent has stored
True in ready, there exist at most f agents with ready = True.
Thus, when the first good agent stores True in ready, it decides
that at least 8f + 1 agents have started the MakeCandidate
stage. Hence, when good agent a; stores True in ready, a;
knows that the length of a cycle is long enough for at least
(4f +1) — f = 3f + 1 good agents to meet each other.
Moreover, assume that agent a;,; is the first good agent that
starts the AgreelD stage and let ¢” be the «-th cycle in which
a;n; does so. In this case, we have the following two facts.

(a) Each good agent in the MakeCandidate stage has wit-
nessed at least (6f + 1) — f = 5f + 1 good agents with
ready = True by the beginning of cycle ¢~ 1.

(b) Atleast (8f +1)— f =Tf+1 good agents have started
the MakeCandadite stage by the beginning of cycle ¢~ 1.

Let a; be an arbitrary good agent that has started the
MakeCandadite stage by the beginning of cycle ¢’~!. By
Fact (a), a; has witnessed at least 5f + 1 good agents with
ready = True by the beginning of cycle ¢”~!. Thus, a; has
stored True in ready at the beginning of cycle ¢”~!. This
means that at least 7f + 1 good agents have stored True in
ready at the beginning of cycle ¢”~!. Therefore, a; witnesses
at least 7f + 1 agents with ready = True during cycle ¢7~!.
Thus, at least 7f + 1 good agents start the AgreelD stage
from either cycle ¢” or cycle ¢**!. Hence, at least 3f + 1
good agents start the AgreelD stage at the same time.

4) AgreelD stage: In the AgreelD stage, agents in the
group candidate obtain a common ID set by using consensus
algorithm PCONS. To do this, a; collects IDs of all good agents
in the group candidate of a;, say GC, and makes a consensus
on collected IDs of agents in GC using PCONS. To simulate
PCONS, as mentioned at section III-B1, agents in GC simulate
one phase of the message-passing model by executing REL
during one cycle. By the behavior of the MakeCandidate stage,
since at least 3f + 1 agents start this stage simultaneously,
the execution of PCONS by agents in GC satisfies the PBC
property. Therefore, all good agents in GC have a common
ID set. Moreover, since collected IDs of every good agent in
GC contains the IDs of all good agents in GC, the common
ID set also contains them by PBC Validity 1.

5) MakeGroup stage: In the MakeGroup stage, agents cre-
ate a reliable group. To do this, as mentioned in Section III-A,
by using the common ID set, agents in the group candidate
decide on a target ID based on the common ID set and gather
at a single node. When agents in GC decide a target ID, the
agents use variable count in addition to the common ID set.
Variable count maintains the number of cycles that elapsed
since the beginning of the AgreelD stage. Since agents in GC
start the AgreelD stage at the same time, they have the same
count. Therefore, agents in GC decide the same target ID in
each cycle of the MakeGroup stage. The strategy for reliable
group creation is as follows. Agents in GC decide a common
target ID. Concretely, letting S be the common ID set, agents
in GC uses the count mod |S|-th smallest ID in S as the target
ID. Let aqrget be the agent with the target ID. Agent asqrget
stays at the node while the other agents in GC search for
Qtarget Using REL. If at least 2f + 1 agents gather at a single
node, they form a reliable group. If agents in GC fail to create
a reliable group at the end of the current cycle, they decide on
a new target ID and repeat the above behavior. Since an agent
updates count at the end of each cycle, these target IDs are
different. Also, since the common ID set contains at least one
ID of good agents in GC and does not include IDs of good
agents not in GC, good agents choose their IDs as the target
ID at least once and create a reliable group before they repeat
f+ 1 times.

6) Way to remove knowledge of f: Finally, we explain the
way to remove knowledge of f. Since agents do not know
f in practice, they use the number of collected IDs in the
Collected stage, say I%, for their decision of the MakeCandidte
and the MakeGroup stages. Since there exist at least 8f + 8



good agents in the network, and the collected IDs contain at
least the IDs of all good agents, k& > 8f + 8 holds. Also,
since there exist f Byzantine agents, the number of IDs of
Byzantine agents in collected IDs is at most f. From those
facts, agents can calculate the condition without using f by
giving the appropriate coefficients to k. However, the number
of IDs of Byzantine agents in collected IDs is different among
good agents. To solve this problem, we set the total number
of agents to exceed the condition threshold by a comfortable
margin.

Theorem 1. Let n be the number of nodes, k be the number of
agents, f be the number of weakly Byzantine agents, and Q. qz
be a good agent with the largest ID among good agents. If the
upper bound N of n is given to agents and k > 9f + 8 holds,
Algorithm MakeReliableGroup makes good agents create
at least one reliable group in O(f - trpr(Amaz-id)) rounds.

Proof. Here we briefly explain the complexity. We can prove
all agents start the AgreelD stage no later than the end of the
second cycle of MakeCandidate stage of a,,qz. This implies
all agents start the AgreelD stage in O(trgr(@maz-id)) rounds
and the length of a cycle is O(tzgr(@maz-id)) rounds. Since
the AgreelD stage requires O(f) cycles by Lemma 1 and the
MakeGroup stage requires O(f) cycles, the algorithm requires
O(f - trer(@mas-id)) rounds. O

C. Gathering Algorithm

Here, we give a strategy of an algorithm
ByzantineGathering that solves the gathering problem.
Every good agent executes MakeReliableGroup unless it
does not stay with a reliable group at a node. After creating
a reliable group, good agents in the group collect the other
good agents. To do this, when agents create the reliable
group, all good agents in the reliable group execute REL
with the smallest ID among IDs of the agents in the reliable
group. They continue REL for the same number of rounds
as the last cycle of MakeReliableGroup. Then, when a
good agent meets the reliable group with a smaller group ID,
it accompanies the group. We can guarantee that all good
agents can meet during the execution of REL. Intuitively,
this is because every good agent not in a reliable group
(i.e., executing MakeReliableGroup) stays at a node or
executes REL while a reliable group executes REL.

Theorem 2. Let n be the number of nodes, k be the number of
agents, f be the number of weakly Byzantine agents, G be
a good agent with the largest ID among good agents, |\ go04|
be the length of apmay-id, and X (n) be the number of rounds
required to explore any network composed of n nodes. If the
upper bound N of n is given to agents and k > 9f + 8
holds, Algorithm ByzantineGathering solves the gather-
ing problem in O(f - trer(Gmaz-id)) = O(f - |Agood| - X (IV))
rounds.

IV. CONCLUSION

In this paper, we have developed an algorithm that achieves
the gathering with non-simultaneous termination in weakly

Byzantine environments. The algorithm reduces time com-
plexity compared to the existing algorithm if n is given to
agents, although the guarantees on simultaneous termination
and startup delay are not the same. More specifically, the pro-
posed algorithm achieves the gathering in O(f|Agooa|- X (IN))
rounds if the upper bound N of the number of nodes is given
to agents and at least 9 f +8 agents exist in the network. In the
algorithm, several good agents first create a reliable group so
that good agents can trust the behavior of the group to suppress
the influence of Byzantine agents. After that, the reliable group
collects the other good agents, and all good agents gather at
a single node. To create a reliable group, several good agents
make a common ID set by simulating a parallel Byzantine
consensus algorithm and gather by using the common ID set.
As future work, it is interesting to consider the case that agents
start at different times. In the existing gathering algorithm [3],
when an agent starts the algorithm, it executes an exploring
algorithm to wake up sleeping agents. By this behavior, this
algorithm creates an upper bound on the startup delay between
good agents, and thus it deals with the startup delay in a similar
way to simultaneous startup. We will examine whether this
approach can be taken for the proposed algorithm as well. It
is also worth studying a gathering algorithm using a Byzantine
consensus algorithm with less than 9f + 8 agents.
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